□-decay theory
\(\alpha \)-particle penetration through Coulomb Barrier

- **Goal**: *estimate the parent lifetime for \(\alpha \)-decay*
- **Assume** an \(\alpha \)-particle is formed in the parent nucleus \(\alpha \)
- Parent nucleus = \(\alpha \)-particle + daughter nucleus
- \(\alpha \)-decay \(\alpha \) \(\alpha \)-particle must “tunnel” through the Coulomb barrier from \(R \) (nuclear matter radius) to \(b \) (called the “turning point”).
Alpha Decay for Rn-222
\[-\text{-particle penetration through Coulomb Barrier} \]

- **Goal:** estimate the parent lifetime for \[-\text{-decay} \]
- Consider the \[-\text{-particle} \] moving in the potential of the daughter nucleus.
- For \(r > R \), this is a central force problem with

\[
Q = T_{\Box} + T_D \quad ; \quad T_{\Box} = \frac{1}{2} m_{\Box} v_{\Box}^2 \quad ; \quad T_D = \frac{1}{2} m_D v_D^2
\]

\[
Q = T_m = \frac{1}{2} m v_{rel}^2 \quad ; \quad m = \frac{m_{\Box} m_D}{m_{\Box} + m_D}
\]

\[E = Q \quad \text{Motion of a reduced mass} \quad \Box -\text{particle relative to center of daughter nucleus} \]
□-particle penetration through Coulomb Barrier

- **Goal:** estimate the parent lifetime for □-decay
- Assume that the rate of □-decay per nucleus (□) can be obtained as
 - □ = (probability for □-particle to penetrate the barrier) • (number of hits on the boundary per sec.)
 - (probability for □-particle to penetrate the barrier) = “transmission coefficient” T
\[\text{-particle penetration through Coulomb Barrier} \]

- (probability for \[\text{-particle to penetrate the barrier} \) = “transmission coefficient” \(T \)
- To calculate \(T \) for the Coulomb barrier -- consider the \[\text{-particle} \) transmission through a one-dimensional rectangular barrier.
- From chapter 2, we have the transmission coefficient \(T \) for (simple) case --
1-dimensional rectangular barrier

\[V_o \]

\[E \]

\[2a \]

\[0.0 \]
\[
T = \frac{(2k\Box)^2}{\left(k^2 + \Box^2\right)^2 \sinh^2 2\Box a + (2k\Box)^2}
\]

\[
k = \frac{\sqrt{2mE}}{\hbar}; \quad \Box = \frac{\sqrt{2m(V_o \Box E)}}{\hbar}
\]

\[V_o >> E; \quad \Box a \text{ is “large”}\]

\[
\sinh^2 2\Box a = \left[e^{2\Box a} \Box e^{2\Box a} \right]^2
\]

\[
\sinh^2 2\Box a \Box e^{4\Box a}
\]

\[
\left(k^2 + \Box^2\right)^2 e^{4\Box a} + (2k\Box)^2 \Box \left(k^2 + \Box^2\right)^2 e^{4\Box a}
\]

\[
T \Box \frac{(2k\Box)^2}{\left(k^2 + \Box^2\right)^2 e^{4\Box a}} = \frac{(2k\Box)^2 e^{4\Box a}}{(k^2 + \Box^2)^2} \quad e^{4\Box a} \text{ important!!}
\]
Coulomb barrier penetration

- Consider penetration through Coulomb barrier as a sequence of rectangular barriers.
- Total transmission coefficient is

\[T = T_1 \cdot T_2 \cdot T_3 \cdot T_4 \cdots = \prod_i T_i \]

\[\ln T = \sum_i \ln T_i \]
Coulomb barrier penetration

\[LnT_i = 2i(2a) + 2Ln \left(\frac{2(ka)(i\lambda a)}{ka} \right) + Ln \text{ term small} \]

\[LnT_i = 2i(2a) \]

\[LnT_i = 2i(\lambda x) ; \lim_{x \to 0} \]

\[LnT_{barrier} = 2 \frac{\sqrt{2m[V(x) - E]}}{\hbar} dx \]
Coulomb barrier penetration

\[\ln T = \int_{\text{barrier}} 2 \frac{\sqrt{2m[V(x) - E]}}{\hbar} \, dx \]

- We have assumed \(V(x) \gg E \)
- Where in \(x \) is this approximation less good?

\[T = e^{-G} \]

\[G = 2 \frac{2m}{\hbar^2} \left[\frac{b}{4} \right]^{1/2} Z_1 Z_2 e^2 \frac{E}{4b r} \left[\frac{1}{2} \right]^{1/2} \, dr \]

\(Z_1 \) daughter \(Z_2 = 2 \)
Coulomb barrier penetration

\[E = \frac{Z_1 Z_2 e^2}{b} \]

\[\frac{1}{r - b} \cdot \frac{1}{1/b} = \sqrt{b} \cos^1 \frac{R}{b} \]

If \(E << V(R) \) Low Energy \(-\)-particle \(b >> R \)

\[\frac{R}{b} \quad 0 \quad \cos^1 \frac{R}{b} \quad \frac{R}{b} \]

\[\frac{R^2}{b^2} \ll \frac{R}{b} \]
Coulomb barrier penetration

\[G = \frac{2mc^2Z_1Z_2e^2b^{1/2}}{4\sqrt{b}\hbar^2c^2} \]

\[b = \frac{Z_1Z_2e^2}{4\sqrt{b}E} \]

\[E = \frac{1}{2}mv_{in} \]

\[m = \frac{m\Box m_D}{m\Box + m_D} \]

\[E = Q \]

\[\frac{R}{b} = \frac{Q}{B} \]

You can easily show this ratio is true.
Coulomb barrier penetration

\[G = \frac{2mc^2}{\hbar^2 c^2 Q} \left(\frac{Z_1 Z_2 e^2}{4 \frac{Q}{B}} \right)^{1/2} \]

\[T = e^{-G} \]

\[T = \exp \left(-2 \frac{2mc^2}{\hbar^2 c^2 Q} \left(\frac{Z_1 Z_2 e^2}{4 \frac{Q}{B}} \right)^{1/2} \right) \]
Barrier hit frequency

• For $r < R$, \square-particle moves with v_{in}

$$f = \frac{v_{in}}{R}$$

Frequency of hits on Coulomb barrier

$$v_{in} = \sqrt{\frac{2T_{in}}{m}}$$

Velocity of \square-particle inside daughter

$$T_{in} = Q \square V_o$$

Remember: V_o is negative!

$$\square = f \ T$$

\square-particle decay constant - probability per unit time for decay
-particle decay lifetime

\[t_{1/2} = \frac{\ln 2}{\frac{2mc^2}{\hbar^2 c^2 Q} \exp \left(\frac{2mc^2}{\hbar^2 c^2 Q} \frac{Z_1 Z_2 e^2}{4Qb} \right) + \frac{Rc}{2\sqrt{2(Q\Box V_0)/mc^2}}} \]
\[t_{1/2} = \frac{\ln 2}{2} \cdot \frac{R_c}{\sqrt{2/Q \cdot V_o}} \cdot \exp \left[+2 \cdot \frac{2mc^2}{\hbar c^2 Q} \cdot \frac{1/2}{2} \cdot \frac{Z_1 Z_2 e^2}{4 \cdot \overline{\overline{\cdot}}} \cdot \frac{1/2}{2} \cdot \frac{Q}{B} \right] \]

\(Q \) is measured for \(\alpha \)-decay

\(m \) is calculated for \(\alpha \) and daughter; \(Z_1 \) & \(Z_2 \) are known

\(R \) is assumed to be \(R_0 A^{1/3} \) \(\alpha \) Calculate \(B \)

\(V_o \) is taken to be \(\approx 35 \text{ MeV} \) (from other studies)

\(A \) is for parent nucleus; may not give best radius!
\(\alpha\)-particle decay lifetime

• **Assumptions:**
 - \(\alpha\)-particle *preformation* in nucleus; did not estimate the rate for this from Fermi GR -- involves
 \[V_{fi} = \int f V_{a} i dV \]

Final nuclear state of \(\alpha\)-particle + daughter nucleus

Initial nuclear state of parent nucleus

\(V_a\) causes transition from \(i\) to \(f\)
\[\alpha\]-particle decay lifetime

- **Assumptions:**
 - Assumed nucleus *is a sphere*; many large-A nuclei are deformed (ellipsoids)
 - Assumed the \(\alpha\)-particle takes off zero angular momentum, i.e., \(\ell = 0\)